Polymorphic Encryption and Pseudonymisation (PEP)

ECP/PLlab, Den Haag

Bart Jacobs and the PEP team bart@cs.ru.nl Feb. 22, 2017

Outline

Introduction

A PEP crash course Polymorphic encryption Polymorpic pseudonymisation

Formal description, mathematically ElGamal crypto Basic protocols

Page 2 of 27 Jacobs et al. Feb. 22, 2017 PEP

iCIS | Digital Security Radboud University

1

Page 1 of 27 Jacobs et al. Feb. 22. 2017 PEF

iCIS | Digital Security Radboud University

-

Where we are, sofar

Introduction

Parkinson disease

- Nijmegen neurologist Bas Bloem, Parkinson expert ►
- Founder of ParkinsonNet, organisation for specialised care its efficiency has national impact, international attention
- Part of trade mission to US, in june 2015, with Royal family joint meeting with CEO Andy Conrad of Verily - Google's biotech branch — start of plans for joint research project

Page 3 of 27 Jacobs et al. Feb. 22, 2017 PEP Introduction

iCIS | Digital Security Radboud University

Verily: under Alphabet, besides Google

Interested in Parkinson-style diseases Sergey Brin has increased likelihood to develop Parkinson

iCIS | Digital Security Radboud University

- Has top-equipment & scientists
- Impressed by well-organised patient access of ParkinsonNet in NL

Wishes to avoid (privacy) controversies

- Many IT-giants are expanding into healthcare EU market is especially challenging for US companies — because of strict data protection regulation
- Google's proximity makes everything super-sensitive
- high exposure & high pressure to get things right
- but also more follow-up opportunities

Cooperation outline

- RadboudUMC (hospital) has contract with Verily to do (joint) Parkinson research
 - medical data collected from 650 NL Parkinson patients •
 - behaviour data from smart watched provided by Verily
 - Verily contributes both in cash and in kind
 - NL co-funding, e.g. from top sector Life Sciences other NL-UMCs may join
- Radbound University (Digital Security group) designs and builds secure PEP database for this project
 - external funding (760K) from Province of Gelderland •
 - no Verily/Google funding but Verily will use PEP ٠
 - PEP is built as open source possibly with dual licence •
 - PEP-deployement foreseen with external partners

1

Which medical data will be collected?

- Clinical data, via e-forms
- biospecimens, via samples
 - analysed separately by RadboudUMC and by Verily
 results will be shared via PEP
- MRI & ECG
- images taken by Donders; large files
- Genetic data
 also large
- Behavioural data, via wearables, and possibly apps

These "sources" will each use different $\ensuremath{\mathsf{pseudonyms}}$ of the same subject; data will be combined in the PEP database.

Page 6 of 27 Jacobs et al. Feb. 22, 2017 PEP Introduction

iCIS | Digital Security Radboud University

Holy grail of personalised medicine

- New development in healthcare: fine-grained personalised treatment based on statistical outcomes of large scale analysis of patient data
- In personalised healthcare one has to deal with:
 - identifyable medical data for the diagnosis and treatment of individual patients;
 - pseudonymised patient data for large scale medical research; multiple sources of patient data, including in particular
 - (wearable) self-measurement devices and apps.
 - the need to ensure confidentiality of patient data and integrity, authenticity and availability too;
- The PEP framework is designed for this situation; it offers:
 privacy-protection by design via encryption and pseudonymisation
- support for the basic data-access functionality for research, and potentially treatment too, in personalised healthcare.

Page 7 of 27 Jacobs et al. Feb. 22, 2017 PEP Introduction

iCIS | Digital Security Radboud University

Timeline

Oct '16	Project start
May'17	 Beta version of PEP must be up-and-running this is when enrolments of study participants starts clinical and biospecimen data has highest priority wearable data must also be uploadable — via Verily
June'19	 Enrolment of last of 650 patients PEP database must be fully functioning, for both upand down-load of all datagroups possibly other (inter)national research groups have joined by then
Oct'21	Project end — but successive one-year extension are possible

Page 8 of 27 Jacobs et al. Feb. 22, 2017 PEP Introduction

iCIS | Digital Security Radboud University

Legal essentials

- Radbound UMC is data controller, Verily is processor
 the contract is under NL law
 - Google infrastructure may be used, in subprocessor role
- Data storage and exchange will be done only via PEP
 pseudonymisation and encryption are intrinsic
- De-pseudonymisation attemps are forbidden
- Study participation is based on explicit consent
- Raw & sanitised data are shared via PEP, but "inventions" are separate

External legal experts of *Project Moore* and *Considerati* have drafted the contract and helped with the negotiations.

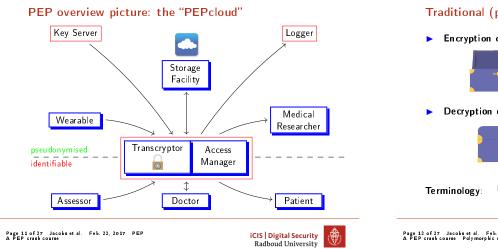
Page 9 of 27 Jacobs et al. Feb. 22, 2017 PEP Introduction iCIS | Digital Security Radboud University

New EU privacy regulation, and PEP

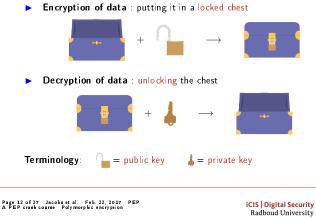
- Europe has recently (May 2016) adapted the GDPR
 GDPR = General Data Protection Regulation
 - effective after a 2-year transition period
- It demands data protection by design and default
 mandatory DPIA = data protection impact assessment
 hefty fines for non-compliance
- The GDPR encourages innovation, as long as organisations implement appropriate safeguards
 - it allows for subsequent processing that is "compatible"

Don't whine about the GDPR, but check what modern crypto can do for you!

This is where PEP comes in.

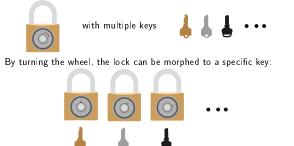


Where we are, sofar

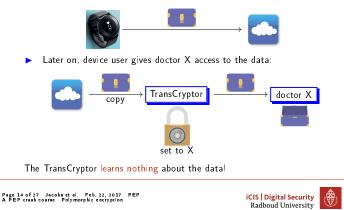

ntroduction

A PEP crash course Polymorphic encryption Polymorpic pseudonymisation

Formal description, mathematically


Traditional (public key) encryption, pictorially

Polymorphic locks


Page 13 of 27 Jacobs et al. Feb. 22, 2017 PEP A PEP crash course Polymorphic encryption

- Traditionally, only the owner of the private key is can decrypt
- In polymorphic encryption we use malleable locks:

Polymorphic encryption scenario (no pseudonyms yet)

Sensitive device data are stored under polymorphic encryption

Basic idea in polymorphic pseudonymisation

- Each user/patient A has a unique identifier pid_A (= patient identifier)
 - e.g. social security number, like BSN in NL
- This pid can be "morphed" into pseudonyms, different per data handler
- We call the pseudonym for data handler X, generated from pid_A, the local pseudonym of pid_A at X
 - The central TransCryptor can create these local pseudonyms again in a blind manner

Polymorphic pseudonyms, pictorially

• An encrypted pseudonym is a pid in a chest with an extra wheel:

- ► This second wheel changes the content, in a blind manner
- ▶ The TransCryptor can set both wheels coherently, so that participant X can decrypt and find the local pseudonym of pid at X
- There are now two chests:
- (1) one data-chest, as for polymorphic encryption **[11]**
- (2) one pseudonym-chest, with an extra wheel

iCIS | Digital Security Radboud University

1

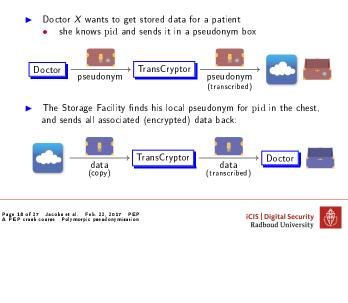
1

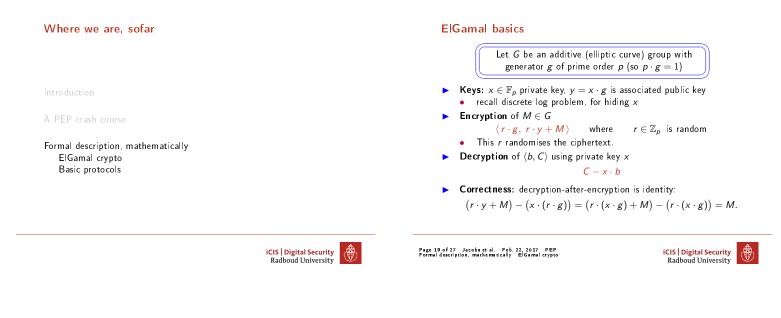
Storage scenario, with pseudonyms

▶ The user (device) puts medical data in the data-chest, and his/her pid in the pseudonym chest, and sends both to the TransCryptor:

The TransCryptor adjusts both wheels on the pseudonym-box — but does nothing with the data box!

TransCryptor		. 🦰 💻
TransCryptor	data pseudonym	∽ * ₀ `
	(transcribed)	


 The encrypted data are stored under the local pseudonym of pid for the Storage Facility
 the same happens with data from other sources


• the same happens with data from other

Page 17 of 27 Jacobs et al. Feb. 22, 2017 PEP A PEP crash course Polymorpic pseudonymisation

Retrieval scenario, with pseudonyms

ElGamal manipulations

We introduce explicit notation, retaining the public key y

$$\mathcal{EG}(r, M, y) = \langle r \cdot g, r \cdot y + M, y \rangle$$

We describe three operations on ElGamal ciphertexts:

- (1) re-randomise: to change the appearance, but not the content
- (2) re-key: to change the target, who can read the ciphertext (
- (3) re-shuffle: to raise the plaintext to a certain power (

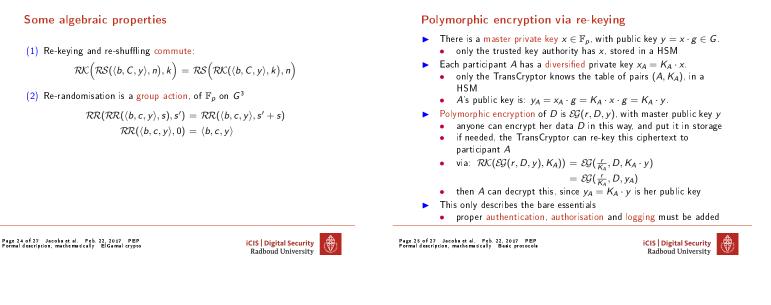
These operations will be defined as three functions $\mathcal{RR}, \mathcal{RK}, \mathcal{RS}$ each of type, independent of any encryptions

 $G^3 \times \mathbb{F}_p \longrightarrow G^3.$

Page 20 of 27 Jacobs et al. Feb. 22, 2017 PEP Formal description, mathematically ElGamal crypto

(1) Re-randomisation

Definition (of $\mathcal{RR}\colon \mathcal{G}^3 imes \mathbb{F}_{p} o \mathcal{G}^3)$
Define re-randomisation with $s\in \mathbb{F}_p$ as:
$\mathcal{RR}(\langle b, C, y \rangle, s) \stackrel{\text{def}}{=} \langle s \cdot g + b, s \cdot y + C, y \rangle$
Lemma
This re-randomising is an encryption of M with random $s + r$, that is:
$\mathcal{RR}(\mathcal{EG}(r,M,y),s) = \mathcal{EG}(s+r,M,y)$
$Proof: \ \mathcal{RR}\big(\mathcal{EG}(r,M,y),s\big) = \mathcal{RR}\big(\langle r \cdot g, r \cdot y + M, y\rangle,s\big)$
$=\langle s \cdot g + r \cdot g, s \cdot y + r \cdot y + M, y \rangle$
$=\langle(s+r)\cdot g,(s+r)\cdot y+M,y\rangle$
$= \mathcal{EG}(s+r,M,y).$


Page 21 of 27 Jacobs et al. Feb. 22, 2017 PEP Formal description, mathematically ElGamal crypto

(2) Re-keying (wheel on lock

Define re-keying with $k\in \mathbb{F}_{ ho}$ as:	
$\mathcal{RK}(\langle b, C, y \rangle, k) \stackrel{def}{=} \langle \cdot \rangle$	$\frac{1}{k} \cdot b, C, k \cdot y \rangle$
where $rac{1}{k}\in \mathbb{F}_{ ho}$ is the inverse of k .	
Lemma	
This re-keying is an encryption of M with	public key $k \cdot y$, that is:
$\mathcal{RK}(\mathcal{EG}(r, M, y), k) =$	$\mathcal{EG}(\frac{r}{k}, M, k \cdot y)$
It can be decrypted with adapted private	key k·x.
Proof: $\mathcal{RK}(\mathcal{EG}(r, M, y), k) = \mathcal{RK}(\langle r \cdot g, r \cdot g, r \cdot y + M, k \cdot y)$	
of 27 Jacobs et al. Feb. 22, 2017 PEP escription, mathematically ElGamal crypto	iCIS Digital Security Radboud University

(3) Re-suffling (wheel on chest

Define re-shuffling with $n\in \mathbb{F}_p$ as:	
$\mathcal{RS}(\langle b, C, y \rangle, n) \stackrel{\text{def}}{=} \langle n \rangle$	$\cdot b, n \cdot C, y \rangle$
Lemma	
This re-shuffling with n is an encryption o	f n · M with random n · r
$\mathcal{RS}(\mathcal{EG}(r, M, y), n) = \mathcal{EG}(r, M, y)$	$\mathcal{G}(n \cdot r, n \cdot M, y)$
$Proof: \ \mathcal{RS}(\mathcal{EG}(r, M, y), n) = \mathcal{RS}(\langle r \cdot g \rangle)$	$, \mathbf{r} \cdot \mathbf{y} + \mathbf{M}, \mathbf{y} \rangle, \mathbf{n}$
(($, r \cdot y + M, y \rangle, n$ $n \cdot (r \cdot y + M), y \rangle$
$= \langle \mathbf{n} \cdot \mathbf{r} \cdot \mathbf{g},$	
	$n \cdot (r \cdot y + M), y \rangle$ $r, (n \cdot r) \cdot y + n \cdot M, y \rangle$
$= \langle n \cdot r \cdot g,$ $= \langle (n \cdot r) \cdot g$	$n \cdot (r \cdot y + M), y \rangle$ $r, (n \cdot r) \cdot y + n \cdot M, y \rangle$

Polymorphic pseudonymisation via re-shuffling

- Each patient *B* has personal identifier $pid_B \in G$
- B's local pseudonym at A is pid_B@A = S_A · pid_B
 only the TransCryptor knows these pairs (A, S_A)
- B is polymorphic pseudonym is $\mathcal{EG}(r, \operatorname{pid}_B, y)$
- All B's data (for storage) is sent to the TransCryptor with this PP
 the TransCryptor re-shuffles and re-keys PP to the local
- $\begin{array}{l} & \textbf{pseudonym } \operatorname{pid}_{\mathcal{B}} \mathbb{Q}SF = S_{SF} \cdot \operatorname{pid}_{\mathcal{B}} \text{ of the Storage Facility} \\ \bullet \quad \mathsf{Via:} \quad \mathcal{RK}(\mathcal{RS}(\mathcal{EG}(r,\operatorname{pid}_{\mathcal{B}},y),S_{SF}),K_{SF}) \end{array}$
- $= \mathcal{EG}(\frac{S_{SF} \cdot r}{K_{SF}}, S_{SF} \cdot \text{pid}_{B}, K_{SF} \cdot y) = \mathcal{EG}(S_{SF} \cdot r, \text{pid}_{B}@SF, y_{SF})$ SF decrypts and uses this local pseudonym pid_B@SF as database
- key to store the (polymorphically encrypted) data of *B* lf doctor *A* wants to retrieve *B*'s data:
- A sends PP EG(r, pid_B, y) to the TransCryptor, who re-keys and re-shuffles it to SF, who obtains his local pseudonym of B, and looks up and returns the requested data, which gets re-keyed to A

Conclusion

- Privacy and security are a license to operate in medical (big data) research
- PEP will be a strategic high-profile open source project, potentially also with high-impact, via a broad range of users
- It provides essential infrastructure for (academic) medical research
 it will be tested first in a large Parkinson study with Radboud UMC and Verily
 - PEP will be integrated with DRE (Digital Research Environment)
 applications in other areas are exist, but are postponed
- See https://pep.cs.ru.nl for more info and documentation.
 - PES)
- For more privacy-friendly technology: https://privacybydesign.foundation

Page 27 of 27 Jacobs et al. Feb. 22, 2017 PEP Formal description, mathematically Basic protocols